Authors: Martino E Malerba, Craig R White, and Dustin J Marshall
Published in: Ecology Letters
Abstract
Size imposes physiological and ecological constraints upon all organisms. Theory abounds on how energy flux covaries with body size, yet causal links are often elusive.
As a more direct way to assess the role of size, we used artificial selection to evolve the phytoplankton species Dunaliella tertiolecta towards smaller and larger body sizes.
Within 100 generations (c. 1 year), we generated a fourfold difference in cell volume among selected lineages. Large-selected populations produced four times the energy than small-selected populations of equivalent total biovolume, but at the cost of much higher volume-specific respiration. These differences in energy utilisation between large (more productive) and small (more energy-efficient) individuals were used to successfully predict ecological performance (r and K) across novel resource regimes.
We show that body size determines the performance of a species by mediating its net energy flux, with worrying implications for current trends in size reduction and for global carbon cycles.
Malerba ME, White CR, Marshall DJ (2017) Eco-energetic consequences of evolutionary shifts in body size, Ecology Letters, PDF DOI