Can we predict egg size of marine fish by looking at the predictability of the environment?

The size of eggs in marine fish has been observed to decrease with increasing temperatures and results from a new study support this finding but, more interestingly, suggest that the predictability of the environment is also important in shaping patterns in egg size.

Diego Barneche and Dustin Marshall from the Centre for Geometric Biology have collaborated with Scott Burgess of Florida State University to compile a dataset of 1078 observations of fish egg size taken from 192 studies that took place between 1880 and 2015 and which include 288 species. This enabled them to test multiple life history theories, including the prediction that in environments with stable food regimes the most effective strategy to maximise reproductive rates is to produce many small eggs.

When compiling this data, Diego and colleagues only included geo-located data so that they could use other existing datasets to estimate means and predictability of sea surface temperatures and chlorophyll a concentrations for the different locations.

The research team were interested, not only in testing how egg size responds to changes in average temperature, but how environmental productivity or food supply (using chlorophyll a as a proxy measure) will affect egg size. The team also formally tested how different components of environmental predictability would affect egg size; they looked at seasonality as well as temporal autocorrelation (how similar conditions at any one point in time are likely to be with previous conditions) to provide indices of environmental predictability.

Diego and colleagues found that egg size decreased as temperatures or chlorophyll a concentrations increased. In contrast, environments that were more seasonal in respect to temperature had larger eggs, but so did environments that were not seasonal in respect to chlorophyll a but were temporally autocorrelated.

These graphs show data from 192 studies and 1,078 observations of fish egg size where egg size decreased as both (a) temperature and (b) chlorophyll-a concentrations increased.

The findings from this study are consistent with a theory that suggests that in an unpredictable environment mothers employ a ‘bet-hedging’ strategy whereby they insulate their offspring from poor conditions through better provisioning, that is, they produce larger eggs.

Importantly this study demonstrated that different components of environmental variation – not just changes in the mean environmental state – contribute to observed patterns in egg size. As future changes to the ocean are expected to impact not only the average state but the degree of predictability, there may be profound effects on the distribution of marine life history traits.

This research is published in the journal Global Ecology and Biogeography