Why release small amounts of sperm slowly?

Sperm competition theory has been central to our understanding of male reproductive biology for many years and is dominated by the idea that males compete strongly to fertilise female’s eggs. But in many species the external environment will also influence reproductive strategies and, in their new publication, Colin Olito and Dustin Marshall ask an obvious but neglected question “what would reproductive strategies look like in the absence of sperm competition?”

Their interest was sparked by the fact that broadcast spawning species (e.g. seaweeds, corals annelid worms, sea stars and many fish taxa) release sperm and eggs to be fertilised externally, which provides an increased opportunity for the environment to influence the evolution of spawning strategies when compared to internal fertilisers.

In addition, broadcast spawners also have spawning strategies that differ markedly from predictions arising from classic sperm competition theory. For example, many broadcast spawning species have very long spawning times characterised by slow individual gamete release rates and, what is more, large males do not necessarily release more sperm than small males despite a large investment in gonads; neither strategy is predicted by classic theory.

Colin and Dustin devised two experiments to consider how fertilisation success changes with the amount of sperm released (ejaculate size) and the rate at which it is released. They used a marine intertidal polychaete worm, Galeolaria caespitosa, that has separate sexes and releases gametes initially into its tube and then, through rhythmic whole-body contractions, out of the tube in slow steady pulses.

A female Galeolaria removed from its tube and releasing eggs.

By repeatedly injecting different volumes of sperm (at the same concentration) and at different speeds into a flume set up to have laminar flow, Colin and Dustin were able to measure the fertilisation success of eggs placed ‘downstream’ of the sperm injection point.

Experimental set-up using the flume. Laminar flow was achieved by using collinators (drinking straws).

They used an experimental design that ensured that there was no variation in the number of males contributing to the pooled ejaculate used for the different experimental treatments. So, strictly speaking the experiments were not done in the absence of sperm competition, but, instead, in the absence of variation in sperm competition.

Colin and Dustin found that the benefits of releasing sperm quickly or slowly depended on ejaculate size: when only a small amount of sperm was released, it was better to release it slowly but when ejaculate size was larger and released at a faster rate, fertilisation success was greater for eggs further away. However, there was a substantial ‘cost’ associated with this higher fertilisation success for distant eggs. The more sperm males release, the more is wasted during sperm dispersal.

Colin and Dustin’s study suggests that slow sperm release rates are expected to evolve whether or not males experience strong sperm competition, and highlight the importance of taking account of selection from the external environment when seeking adaptive explanations for male broadcast spawning strategies.

This work has been published in the Journal of Evolutionary Biology.