Why do cooler mothers produce larger offspring?

In a recently published letter, Amanda Pettersen, Craig White, Rob Bryson-Richardson and Dustin Marshall propose a simple model to explain a pervasive conundrum – why do cooler mothers produce larger offspring?

Life history theory maintains that mothers balance the costs and benefits of making a few larger and better performing offspring against making many smaller and poorer performing offspring.

A major challenge to the theory is the fact that temperature seems to alter the optimisation of this trade off. Observations indicate that across a wide range of taxa and systems, mothers in warmer conditions produce smaller offspring. What is more, experimental studies have also shown that increasing temperatures decrease offspring size.

Amanda and her PhD supervisors are proposing that linking life history theory and metabolic theory, which relates to energy use, can provide a widely applicable explanation to the offspring size / temperature relationship.

Their model is centred on the cost of development. Mothers must provision their offspring until they are able to feed for themselves, that is, attain nutritional independence. The time spent in this developmental phase coupled with the energy expended will comprise the ‘cost’ of development. The minimum offspring size that allows individuals to reach nutritional independence must, then, increase with increasing cost of development.

As temperatures increase, developmental rate is expected to increase so that less time is spent in the developmental phase and metabolic rates (rates of energy use) are also expected to increase. The research team are suggesting that we consider how sensitive these two components are to temperature. If developmental rate is more sensitive to changes in temperature than metabolic rate, then the cost associated with provisioning offspring to achieve nutritional independence will decrease with increasing temperatures.

Or to put it another way, if developmental rate increases more than metabolic rate as temperatures rise, so that the developmental time is shorter in relation to metabolic rate, then the developmental cost is lower and offspring are smaller at higher temperatures. If, however, metabolic rate is more sensitive to changing temperatures than developmental rate then the converse is true; the developmental cost will increase with increasing temperatures and offspring are predicted to be larger at higher temperatures.

In order to develop and test these ideas the team needed to generate measures of temperature dependence of metabolic rate and developmental rate simultaneously, something that hadn’t been done before in a systematic fashion.

They started by methodically searching published literature to determine the relationship between the temperature that mothers experience and the size of their offspring. They then experimentally manipulated temperature to examine how developmental rate and metabolic rates changed in two very different species – the bryozoan Bugula neritinaand the zebrafish Danio rerio. They used the data from these experiments to develop the mathematical functions for their model to determine how the costs of development change with temperature. Finally they searched the literature again to get data on the temperature dependence of developmental and metabolic rates for a wide range of species because they wanted to test whether their model could apply more generally.

Amanda and her colleagues found that the offspring size / temperature relationship is widespread. Also in the two species they collected experimental data for, they found that development time is more sensitive to temperature than metabolic rates. This means that the overall costs of development decrease with temperature. What is more, they found that this pattern applies more broadly – for 72 species across five phyla the costs of development are higher at cooler temperatures.

Combining life history theory and metabolic theory has allowed the research team to provide a general explanation for offspring size / temperature relationships. In colder temperatures mothers show an adaptive response whereby they offset the increased costs of development by making larger offspring that possess greater energy reserves.

This research is published in the journal Ecology Letters.

This figure shows the relationship between two biological rates; development time (D) and metabolic rate (MR). In the left-hand graph we can see that as temperature increases from T4 to T1, development time is expected to decrease and metabolic rate is expected to increase. The right-hand panels demonstrate what is predicted to happen when b) the developmental rate is more sensitive to temperature than metabolic rate and so c) the total costs of development (and therefore offspring size) should decrease with increasing temperature. In d) the converse is true – metabolic rate is more sensitive to temperature than developmental rate and so e) total costs of development (and offspring size) will increase with increasing temperature.