How can pathogens optimise both transmission and dispersal?

Certain pathogens (disease-producing organisms) are stuck in a Catch-22; to survive they need to continue to find, and infect, new hosts. But infection makes their hosts sick and less likely to move to where there are new hosts to infect.

PhD student Louise Nørgaard and her supervisors Ben Phillips and Matt Hall have found evidence of a pathogen that resolves this issue by exploiting the differences in size and behaviour of male and female hosts to optimize its own chance of successful infection.

The team uses the freshwater crustacean Daphnia magna and its common pathogen Pasteuria ramosa as a model system to test the idea that a pathogen can exploit differences between the sexes of a host to its advantage. The pathogen P. ramosa is ingested by Daphnia after which it sterilises and kills the host, releasing transmission spores that are ready to infect a new host. Female Daphnia are bigger, live longer and are more susceptible to infection than males.

Louise set up two separate experiments, allowing her to monitor the probability that Daphnia would disperse from a crowded area to a less crowded area and to measure the rate and distance travelled by infected and uninfected male and female individuals.

In the first experiment Louise was able to capitalise on previous work that has shown that Daphnia will disperse when conditions are crowded. Exposure to water taken from high densities of Daphniais enough to encourage dispersal. Louise used ‘crowded-conditioned’ water and found infected male Daphnia were more likely to disperse than uninfected males. Infected females, on the other hand, were a lot less likely to disperse than uninfected females.

A second experiment found that infected females had four times the number of transmission spores than infected males and moved less far and more slowly than males or uninfected females. Infected males though, moved at the same rate and travelled the same distance as uninfected males.

The figure A shows how far male (blue) and females (green) disperse when infected with the pathogen compared to uninfected individuals. Louise tested two types of pathogen C1 and C19. She also measured the distance travelled (B) and the spore load in infected individuals (C).

So how do these differences between the sexes help the pathogen? Females are bigger and can host large numbers of transmission spores. Staying put when densities are high means they are releasing this large number of spores into a crowd – potentially maximising the chance of further infections.  Smaller males have fewer spores to release and the chance of secondary infections may be maximised when they move to new areas where few individuals are already infected.

Importantly the differences in dispersal behaviour between infected males and females seem to relate directly to the way the pathogen interacts with each sex. Uninfected males and females had similar rates and distance of dispersal while uninfected females were more likely to move away from crowded habitats than males. These patterns disappear when both sexes are infected.

Do these different infection strategies in different sexes provide a form of bet-hedging for the pathogen? Louise and her supervisors think they do and, if widespread, will have important implications for disease dynamics.

This research is published in the journal Biology Letters.