Lab life during lockdown

Lab life has, of necessity, been curtailed throughout the world but it has provided an opportunity for researchers to spend time trawling the literature for data to use in meta-analyses. Our lab is no different and so in this edition of lab life we aim to give an overview about what some of our members have been working on.

Michaela Parascandalo has continued the data mining of reproduction data to enable the group to ask: do larger individuals produce disproportionately more gametes / offspring than smaller individuals in taxa other than fish? So far, we have more than 1000 species across 10 phyla and more than 100,000 data points.

One tricky element of this data collection has been converting the different body size measurements to mass. For example, a paper may present data on head width in wasps, hind tibia length in grasshoppers, or carapace lengths in crabs but Michaela needs to convert this to a measure of mass. To do this she has had to create a repository of morphometric allometries for a number of different species, another great resource for other meta analyses that the lab group might do in which body mass needs to be calculated.

A separate study is also underway that is looking at not only the number of offspring but the size of those offspring in relation to maternal size. So, Melanie Lovass, with help from Michaela, has been compiling data to enable Hayley Cameron and our (now virtual) visitor Darren Johnson from California State University to ask the question: do bigger mothers produce bigger and/or more offspring and are there any differences between warm-blooded and cold-blooded animals?

PhD student, Emily Richardson is particularly interested in organisms that have complex life histories or, in other words, go through metamorphosis to become adults. Emily is gathering data on growth rates in amphibians, fish and marine invertebrates to test the theory that growth rate is maximised relative to mortality rate at the time of metamorphosis, which would mean that fitness is increased.

George Jarvis and Sam Ginther are also doing meta-analyses that relate to their PhD projects. George, like Emily, is interested in organisms with complex life histories but he is looking at large scale evolutionary change in metabolic rate. For his meta-analysis he is compiling metabolic data from marine invertebrates and looking at how metabolic rates vary between species with different developmental modes. With this work, he hopes to better understand the evolution of metabolic rate in complex life cycles.

Sam is interested in the cost of reproduction. He is collecting data on metabolic rates in reproductive and non-reproductive adults as well as their offspring.  This will help him understand how the energy used for reproduction affects the production of offspring in species with dramatically different life histories.

Louise Noergaard has just started a post doc in the CGB and is busy working on a collaborative project between Dustin Marshall and Beth McGraw from Penn State University. Louise is looking at the relationship between wing length and body mass in mosquitoes and assessing how these measures of size relate to lifetime reproductive output. This information can then be put into a model that will consider how these measures of size and reproductive output affect existing predictions of mosquito spread.

Several members of the group are interested in organisms with complex lifestyles. The marine tubeworm Spirorbidae shown here is an example. Larvae are released from the adult brood chamber via a split in the chamber wall (a), the larvae are non-feeding, free swimming (b), when they find a suitable surface the larvae settle and start to metamorphose (c/d) and once metamorphosis is complete newly settled juveniles start to feed.