All organisms must eat to sustain themselves, but some more so than others. Metabolic rates should determine how much food an organism needs and how quickly it can convert that food into growth. We have long suspected the reason mice populations grow faster than elephant populations has something to do with their different metabolisms – for their size, mice have much higher metabolisms. While higher metabolisms might mean faster population growth, there is a supposed downside – populations with relatively higher metabolisms should exhaust resources at a much lower population biomass due to their higher resource demands. Thus, mice populations can sustain more individuals (have larger population sizes) than elephants, but on a per gram basis, mice have far lower population biomasses. That’s the theory at least – in reality no-one really knows.
Remarkably, despite years of interest in this topic, there have been no experimental tests of how metabolism affects populations – instead we relied on mouse-and-elephant-type comparisons – looking for patterns across organisms of very different sizes. While these comparisons are useful, obviously, mice and elephants differ in far more than their metabolisms alone, and these other factors could easily be driving any differences we observe. What’s needed is an experiment that manipulates the metabolism of whole populations, without changing anything else – a difficult task.
Lukas Schuster and Hayley Cameron along with Craig White and Dustin Marshall, set out to do just that. Using more than 1000 individuals of a common fouling marine creature – which feeds by filtering food particles from the water column – the team created 172 experimental populations that differed in their metabolic rates and population densities. These populations were then hung from plastic panels at a local marina where they were left to grow. The team then followed these populations for their entire lifetimes; measuring survival, growth and reproduction.
As anticipated, populations with higher metabolisms grew more rapidly – but what was unexpected was that populations with moderately high metabolic rates actually supported more individuals than those with lower metabolic rates. The reasons are unclear, but what seems to be happening is that higher metabolisms result in more feeding activity, which allows these populations to access relatively more resources, sustaining a larger number of individuals than expected. Metabolic rates can get too high, however, such that populations with the highest metabolic rates showed the expected decline in population size – probably because they exhausted local resources at a greater rate than these resources could be replenished, such that further increases in metabolism had no effect on resource intake.
The results have some surprisingly far-reaching implications. Many of the assumptions about how climate change will affect the resource consumption of future populations are based on classic, but untested theory. Likewise, fisheries are sometimes managed based on expectations about metabolic rate and resource demands. This research shows that the fundamental theory on how metabolism affects population demography needs revision. Higher metabolisms don’t invariably lead to lower population densities and a key rule of life seems to partially broken – higher metabolism populations can have their cake (grow fast) and eat it too (achieve high densities) – up to point at least.
