Winners and losers: why developmental strategy is important in determining marine invertebrate distributions under future climate

Global change will alter the distribution of organisms around the planet. Dustin Marshall and Mariana Álvarez-Noriega found rising ocean temperatures will impact early life stages of marine invertebrates and change the patterns in the distribution of species that we see today. In particular, species in which mothers invest heavily in offspring will be the biggest losers. These species occur predominantly at the poles.

In terrestrial environments seeds often disperse in the wind, with shape and size affecting how far they travel. It turns out much the same happens in the ocean but currents rather than wind carry marine larvae to their new homes. Larvae able to feed spend much longer in the water column meaning these species have far greater dispersal capabilities.

As with plants, dispersal is crucial to the survival of marine populations. Arriving larvae can seed new areas, re-seed vulnerable populations, and provide genetic variation for subsequent generations in far-flung regions. There is a downside: if temperature affects dispersal, it will also shape how species are affected by global warming.

Not all marine species use the same reproductive or life-history strategies which can mean differences in dispersal distances from centimetres to hundreds of kilometres for different species. Interestingly, there is a well-recognised relationship between latitude (or temperature) and reproductive strategy.

Species at higher latitudes (nearer the poles) tend to invest more heavily in their offspring and produce non-feeding larvae or bypass the larval stage altogether. This means these species don’t disperse very far. In contrast, tropical species tend to put little effort into provisioning their offspring and produce larvae that can feed. As a result, these larvae can spend a lot more time in the plankton and can be dispersed vast distances.

Dustin and Mariana wanted to know how these dispersal relationships might change as global temperatures change. To address this question, they revisited the database of marine invertebrates classified into feeding / development types from a previous study. They established relationships between temperature and development mode so they could then explore how predicted temperatures for 2100 would change patterns in distributions.

So, how will global warming affect these relationships? We know species’ in warmer waters are more likely to produce large numbers of feeding larvae able to remain in the water column for weeks at a time. As waters warm, these species are well placed to extend their range.

In contrast, species based in cooler waters tend to invest heavily in individual offspring, meaning that they develop quicker and settle closer to their parents. This reproductive strategy means that such species are more vulnerable to rapid global change as moving to new areas will, of necessity, be step-wise and slow.

Species at the poles will therefore be the biggest losers because not only will their lower dispersal lifestyles mean they will be slow to access cooler waters but also the options are limited; there is nowhere to go.

This figure shows the predicted change in prevalence of three different development modes in the southern hemisphere under a predicted scenario for global warming. The blue line shows an even increase of feeding larvae across all latitudes, while non-feeding planktonic larvae (purple line) will only increase at higher latitudes and there will be a loss of species that invest most heavily in their young and don’t have a planktonic larval stage near the poles (orange line).

This research was published in the journal Philosophical Transactions of the Royal Society B: Biological Sciences.

Projecting marine developmental diversity and connectivity in future oceans

Authors: Dustin J Marshall and Mariana Álvarez-Noriega

Published in: Philosophical Transactions of the Royal Society B: Biological Sciences

Abstract

Global change will alter the distribution of organisms around the planet. While many studies have explored how different species, groups and traits might be re-arranged, few have explored how dispersal is likely to change under future conditions.

Dispersal drives ecological and evolutionary dynamics of populations, determining resilience, persistence and spread. In marine systems, dispersal shows clear biogeographical patterns and is extremely dependent on temperature, so simple projections can be made regarding how dispersal potentials are likely to change owing to global warming under future thermal regimes.

We use two proxies for dispersal — developmental mode and developmental duration. Species with a larval phase are more dispersive than those that lack a larval phase, and species that spend longer developing in the plankton are more dispersive than those that spend less time in the plankton.

Here, we explore how the distribution of different development modes is likely to change based on current distributions. Next, we estimate how the temperature-dependence of development itself depends on the temperature in which the species lives, and use this estimate to project how developmental durations are likely to change in the future.

We find that species with feeding larvae are likely to become more prevalent, extending their distribution poleward at the expense of species with aplanktonic development. We predict that developmental durations are likely to decrease, particularly in high latitudes where durations may decline by more than 90%. Overall, we anticipate significant changes to dispersal in marine environments, with species in the polar seas experiencing the greatest change.

This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.

Marshall DJ, Álvarez-Noriega M (2020) Projecting marine developmental diversity and connectivity in future oceans. Philosophical Transactions of the Royal Society B: Biological Sciences PDF DOI

Dietary preferences in filter-feeding animals might explain their crowded co-existence

An enduring concept in ecology is that space is the resource most in demand for communities living on hard substrates such as rocky shores and pier pilings. We have seen before how these communities can be extremely dense and diverse with little or no unoccupied space. But is space the whole story? These communities also need food and oxygen. How do such dense assemblages of animals manage to extract enough food to allow them to co-exist?

Belinda Comerford, Mariana Álvarez-Noriega, and Dustin Marshall have found different species of filter-feeders tend to consume one species of phytoplankton much more than others when offered a selection. They noticed studies looking at the role food plays in structuring filter-feeding communities tend to consider phytoplankton as a uniform resource. This makes no allowance for differences in size, shape or chemical make-up of the different algal species.

Belinda, Mariana and Dustin suspected that different species of filter-feeders will consume different components of the phytoplankton, reducing competition for food and allowing for the dense and diverse communities that we see in nature. So, they set about testing how different species of filter feeder consumed a mix of three different phytoplankton species that varied in size and shape and chemical make-up. 

They used 11 different species of invertebrate filter-feeding animals and offered them a mix of the three phytoplankton species. They measured the concentrations of each phytoplankton species in the animal chambers one minute and one hour after adding equal volumes of each species to the chambers. They also had control chambers that contained no animals which enabled them to estimate how much of the algae settled out to the bottom during the experimental period.

While most of the animals ingested all three phytoplankton species they did so at different rates. The encrusting bryozoan Watersipora subtorquata consumed the largest algal species at a much greater rate than it did the other two species while the sponge Sycon spp. favoured the smallest algal species. Some species such as the sea squirt Ciona intestinalis appear to be generalists, consuming all three algal species at the same rate. 

It seems that Belinda, Mariana and Dustin might be right. Thinking of phytoplankton as a homogenous resource underestimates the potential for reducing competition between filter-feeding species. If, instead of competing for a ‘common pool’ of phytoplankton, filter feeders target specific subsections then the diverse and densely packed communities that we see are more readily explained.

This research is published in the journal Oecologia.

The different invertebrates ingested the different phytoplankton species at different rates.

Is the X chromosome a hot spot for sexually antagonistic polymorphisms? Biases in current empirical tests of classical theory

Authors: Filip Ruzicka and Tim Connallon

Published in: Proceedings of the Royal Society B: Biological Sciences

Abstract

Females and males carry nearly identical genomes, which can constrain the evolution of sexual dimorphism and generate conditions that are favourable for maintaining sexually antagonistic (SA) polymorphisms, in which alleles beneficial for one sex are deleterious for the other.

An influential theoretical prediction, by Rice (Rice 1984 Evolution), is that the X chromosome should be a ‘hot spot’ (i.e. enriched) for SA polymorphisms. While important caveats to Rice’s theoretical prediction have since been highlighted (e.g. by Fry 2010 Evolution), several empirical studies appear to support it.

Here, we show that current tests of Rice′s theory—most of which are based on quantitative genetic measures of fitness (co)variance—are frequently biased towards detecting X-linked effects. We show that X-linked genes tend to contribute disproportionately to quantitative genetic patterns of SA fitness variation whether or not the X is enriched for SA polymorphisms.

Population genomic approaches for detecting SA loci, including genome-wide association study of fitness and analyses of intersexual FST, are similarly biased towards detecting X-linked effects. In the light of our models, we critically re-evaluate empirical evidence for Rice′s theory and discuss prospects for empirically testing it.

Ruzicka F, Connallon T (2020) Is the X chromosome a hot spot for sexually antagonistic polymorphisms? Biases in current empirical tests of classical theory. Proceedings of the Royal Society B: Biological Sciences PDF DOI

Differential resource use in filter-feeding marine invertebrates

Authors: Belinda Comerford, Mariana Álvarez-Noriega, and Dustin J Marshall

Published in: Oecologia

Abstract

Coexistence theory predicts that, in general, increases in the number of limiting resources shared among competitors should facilitate coexistence.

Heterotrophic sessile marine invertebrate communities are extremely diverse but traditionally, space was viewed as the sole limiting resource. Recently planktonic food was recognized as an additional limiting resource, but the degree to which planktonic food acts as a single resource or is utilized differentially remains unclear. In other words, whether planktonic food represents a single resource niche or multiple resource niches has not been established.

We estimated the rate at which 11 species of marine invertebrates consumed three phytoplankton species, each different in shape and size.

Rates of consumption varied by a 240-fold difference among the species considered and, while there was overlap in the consumer diets, we found evidence for differential resource usage (i.e. consumption rates of phytoplankton differed among consumers). No consumer ingested all phytoplankton species at equivalent rates, instead most species tended to consume one of the species much more than others.

Our results suggest that utilization of the phytoplankton niche by filter feeders is more subdivided than previously thought, and resource specialization may facilitate coexistence in this system. Our results provide a putative mechanism for why diversity affects community function and invasion in a classic system for studying competition.

Comerford B, Álvarez-Noriega M, Marshall D (2020) Differential resource use in filter-feeding marine invertebrates. Oecologia. PDF DOI

Facultative feeding in a marine copepod: effects of larval food and temperature on performance

Authors: Alexander N Gangur, and Dustin J Marshall

Published in: Marine Ecology Progress Series

Abstract

Most marine invertebrate larvae either feed or rely on reserves provisioned by parents to fuel development, but facultative feeders can do both.

Food availability and temperature are key environmental drivers of larval performance, but the effects of larval experience on performance later in life are poorly understood in facultative feeders. In particular, the functional relevance of facultative feeding is unclear. One feature to be tested is whether starved larvae can survive to adulthood and reproduce.

We evaluated effects of larval temperature and food abundance on performance in a marine harpacticoid copepod, Tisbe sp. In doing so, we report the first example of facultative feeding across the entire larval stage for a copepod.

In a series of experiments, larvae were reared with ad libitum food or with no food, and at 2 different temperatures (20 vs 24 °C). We found that higher temperatures shortened development time, and larvae reared at higher temperature tended to be smaller. Larval food consistently improved early performance (survival, development rate and size) in larvae, while starvation consistently decreased survival, increased development time and decreased size at metamorphosis. Nonetheless, a small proportion (3–9.5%, or 30–42.7% with antibiotics) of larvae survived to metamorphosis, could recover from a foodless larval environment, reach maturity and successfully reproduce.

We recommend that future studies of facultative feeding consider the impact of larval environments on adult performance and ability to reproduce.

Gangur A, Marshall D (2020) Facultative feeding in a marine copepod: effects of larval food and temperature on performance. Marine Ecology Progress Series PDF DOI

Conspecific chemical cues drive density-dependent metabolic suppression independently of resource intake

Authors: Melanie K Lovass, Dustin J Marshall, and Giulia Ghedini

Published in: Journal of Experimental Biology

Abstract

Within species, individuals of the same size can vary substantially in their metabolic rate. One source of variation in metabolism is conspecific density – individuals in denser populations may have lower metabolism than those in sparser populations. However, the mechanisms through which conspecifics drive metabolic suppression remain unclear. Although food competition is a potential driver, other density-mediated factors could act independently or in combination to drive metabolic suppression, but these drivers have rarely been investigated.

We used sessile marine invertebrates to test how food availability interacts with oxygen availability, water flow and chemical cues to affect metabolism.

We show that conspecific chemical cues induce metabolic suppression independently of food and this metabolic reduction is associated with the downregulation of physiological processes rather than feeding activity.

Conspecific cues should be considered when predicting metabolic variation and competitive outcomes as they are an important, but underexplored, source of variation in metabolic traits.

Lovass MK, Marshall DJ, Ghedini G (2020) Conspecific chemical cues drive density-dependent metabolic suppression independently of resource intake. The Journal of Experimental Biology PDF DOI

How to estimate community energy flux? A comparison of approaches reveals that size-abundance trade-offs alter the scaling of community energy flux

Authors: Giulia Ghedini, Martino E Malerba, and Dustin J Marshall

Published in: Proceedings of the Royal Society B: Biological Sciences

Abstract

Size and metabolism are highly correlated, so that community energy flux might be predicted from size distributions alone. However, the accuracy of predictions based on interspecific energy–size relationships relative to approaches not based on size distributions is unknown.

We compare six approaches to predict energy flux in phytoplankton communities across succession: assuming a constant energy use among species (per cell or unit biomass), using energy–size interspecific scaling relationships and species-specific rates (both with or without accounting for density effects).

Except for the per cell approach, all others explained some variation in energy flux but their accuracy varied considerably. Surprisingly, the best approach overall was based on mean biomass-specific rates, followed by the most complex (species-specific rates with density).

We show that biomass-specific rates alone predict community energy flux because the allometric scaling of energy use with size measured for species in isolation does not reflect the isometric scaling of these species in communities. We also find energy equivalence throughout succession, even when communities are not at carrying capacity.

Finally, we discuss that species assembly can alter energy–size relationships, and that metabolic suppression in response to density might drive the allometry of community energy flux as biomass accumulates.

Ghedini G, Malerba ME, Marshall DJ (2020) How to estimate community energy flux? A comparison of approaches reveals that size-abundance trade-offs alter the scaling of community energy flux. Proceedings of the Royal Society B: Biological Sciences PDF DOI

Genome size affects fitness in the eukaryotic alga Dunaliella tertiolecta

Authors: Martino E Malerba, Giulia Ghedini, and Dustin J Marshall

Published in: Current Biology

Abstract

Genome size is tightly coupled to morphology, ecology, and evolution among species, with one of the best-known patterns being the relationship between cell size and genome size.

Classic theories, such as the ‘selfish DNA hypothesis,’ posit that accumulating redundant DNA has fitness costs but that larger cells can tolerate larger genomes, leading to a positive relationship between cell size and genome size. Yet the evidence for fitness costs associated with relatively larger genomes remains circumstantial.

Here, we estimated the relationships between genome size, cell size, energy fluxes, and fitness across 72 independent lineages in a eukaryotic phytoplankton. Lineages with relatively smaller genomes had higher fitness, in terms of both maximum growth rate and total biovolume reached at carrying capacity, but paradoxically, they also had lower energy fluxes than lineages with relative larger genomes. We then explored the evolutionary trajectories of absolute genome size over 100 generations and across a 10-fold change in cell size.

Despite consistent directional selection across all lineages, genome size decreased by 11% in lineages with absolutely larger genomes but showed little evolution in lineages with absolutely smaller genomes, implying a lower absolute limit in genome size.

Our results suggest that the positive relationship between cell size and genome size in nature may be the product of conflicting evolutionary pressures, on the one hand, to minimize redundant DNA and maximize performance — as theory predicts — but also to maintain a minimum level of essential function.

Malerba ME, Ghedini G, Marshall DJ (2020) Genome size affects fitness in the eukaryotic alga Dunaliella tertiolecta. Current Biology PDF DOI

‘Oh, the places you’ll go.’ How far can marine larvae travel?

While travel restrictions have become part of the new normal for people all around the world, a recent study has found that the distance travelled by marine larvae is dictated by both biological and physical constraints.

Marine invertebrates face many challenges when it comes to reproduction. Sperm and sometimes eggs are released into the water where they must meet-up to allow fertilisation to take place. These fertilised embryos develop into larvae and remain in the water column until they find a suitable spot to settle. The amount of time they spend in the water column and the distances they travel can be vastly different for different species.

It is not easy to measure how far larvae travel in real-time so, instead, biologists often use genetic information to work out the relatedness of populations as a proxy for dispersal distance. An alternative approach gathers data on larval characteristics to estimate the time spent in the plankton and so the potential for dispersal.

Mariana Noriega and Dustin Marshall from the Centre for Geometric Biology have been working with colleagues from the United States to examine existing data to help them grasp how larval dispersal distance changes on a global scale. Recent exploration of this question has focused on the role of latitude (or temperature) on larval development, developmental mode (feeding or non-feeding larvae), maternal investment into egg size and hydrodynamics. Often these factors are considered separately rather than all together.

Here’s what we know. Higher temperatures speed up larval development so larvae in the tropics may spend less time in the plankton and disperse less far. But to complicate things, larvae in the tropics are more likely to be feeding larvae which means they tend to spend more time in the plankton than their non-feeding counterparts. Plus, mothers in cooler climes tend to invest more energy into their eggs which for non-feeding larvae means more time in the plankton for those that live at higher latitudes.

Mariana and her colleagues were particularly interested in understanding whether these life-history traits that change with latitude will combine with ocean current information to support their prediction that dispersal distances are shorter in the tropics.

The team have looked at data from 766 marine invertebrate species and classified the larvae into feeding or non-feeding. They extracted data on egg size and the time spent in the plankton, plus the latitude and longitude of the recorded observation.

They were then able to use statistical models to estimate planktonic duration at different latitudes by incorporating their data on development mode and egg size. Having the location of the record also enabled Mariana and the team to estimate local current speeds using the publicly available Mercator-Ocean modelling system. Finally, the expected planktonic duration for the ‘average larvae’ was then multiplied by current speed at each location to estimate dispersal potential.

To the team’s surprise, they didn’t find that dispersal distances were shorter in the tropics.

Instead, they found that the faster surface current speeds in the tropics overcame the effects of temperature on larval development time. So, even though larvae spend less time in the plankton they still have the potential to disperse further than the team predicted due to the faster current speeds.

In fact, the team found that larvae travel further at high and low latitudes, that is, the tropics and the poles. Dispersal distances were shortest in temperate regions where the time spent in the plankton is intermediate and current speeds are slower.

Planktonic duration (PD, days) across latitudes. Planktonic duration was estimated for both feeding and non-feeding larvae and then the potential time spent in the plankton was calculated using data for larval development times and egg size (a proxy measure for reserves available for the larvae). Grey circles show the distribution of studies from which data were obtained. The size of circle corresponds to the number of studies (n) at each location; n ranges from 1 to 33.

Predicted dispersal distance. These predictions incorporate both the biological data of the previous figure with current speeds and demonstrate that dispersal distance is actually shorter in temperate regions, (the dark blue areas), in contrast to the research team’s expectations.

Species richness is greater in the tropics but it seems as if this pattern is not driven by larval dispersal as has been previously suggested. If species richness were driven purely by dispersal distance, this study suggests we would find similar species richness at high latitudes and in the tropics, yet this is not the case.

Understanding patterns in larval dispersal is essential for understanding patterns in marine biodiversity and managing our marine systems. Without this, we will struggle to adequately design marine protected areas, effectively manage biological invasions and predict the consequences of climate change.

This research was published in the journal Nature Ecology & Evolution.