Metabolic rate, context-dependent selection, and the competition-colonization trade-off

Authors: Amanda K Pettersen, Matthew D Hall, Craig R White, and Dustin J Marshall

Published in: Evolution Letters


Metabolism is linked with the pace-of-life, co-varying with survival, growth, and reproduction. Metabolic rates should therefore be under strong selection and, if heritable, become less variable over time. Yet intraspecific variation in metabolic rates is ubiquitous, even after accounting for body mass and temperature.

Theory predicts variable selection maintains trait variation, but field estimates of how selection on metabolism varies are rare.

We use a model marine invertebrate to estimate selection on metabolic rates in the wild under different competitive environments.

Fitness landscapes varied among environments separated by a few centimetres: interspecific competition selected for higher metabolism, and a faster pace‐of‐life, relative to competition‐free environments.

Populations experience a mosaic of competitive regimes; we find metabolism mediates a competition-colonization trade-off across these regimes. Although high metabolic phenotypes possess greater competitive ability, in the absence of competitors, low metabolic phenotypes are better colonizers.

Spatial heterogeneity and the variable selection on metabolic rates that it generates is likely to maintain variation in metabolic rate, despite strong selection in any single environment.

Pettersen AK, Hall MD, White CR, Marshall DJ (2020) Metabolic rate, context-dependent selection, and the competition-colonization trade-off. Evolution Letters PDF DOI

The effect of ambient oxygen on the thermal performance of a cockroach, Nauphoeta cinerea

Authors: Emily J Lombardi, Candice L Bywater, and Craig R White

Published in: Journal of Experimental Biology


The oxygen and capacity-limited thermal tolerance (OCLTT) hypothesis proposes that the thermal tolerance of an animal is shaped by its capacity to deliver oxygen in relation to oxygen demand. Studies testing this hypothesis have largely focused on measuring short-term performance responses in animals under acute exposure to critical thermal maximums. The OCLTT hypothesis, however, emphasises the importance of sustained animal performance over acute tolerance.

The present study tested the effect of chronic hypoxia and hyperoxia during development on moderate to long-term performance indicators at temperatures spanning the optimal temperature for growth in the speckled cockroach, Nauphoeta cinerea.

In contrast to the predictions of the OCLTT hypothesis, development under hypoxia did not significantly reduce growth rate or running performance, and development under hyperoxia did not significantly increase growth rate or running performance. The effects of developmental temperature and oxygen on tracheal morphology and metabolic rate were also not consistent with OCLTT predictions, suggesting that oxygen delivery capacity is not the primary driver shaping thermal tolerance in this species.

Collectively, these findings suggest that the OCLTT hypothesis does not explain moderate to long-term thermal performance in N. cinerea, which raises further questions about the generality of the hypothesis.

Lombardi EJ, Bywater CL, White CR (2020) The effect of ambient oxygen on the thermal performance of a cockroach, Nauphoeta cinerea. Journal of Experimental Biology PDF DOI

Developmental cost theory predicts thermal environment and vulnerability to global warming

Authors: Dustin J Marshall, Amanda K Pettersen, Michael Bode, and Craig R White

Published in: Nature Ecology & Evolution


Metazoans must develop from zygotes to feeding organisms. In doing so, developing offspring consume up to 60% of the energy provided by their parent.

The cost of development depends on two rates: metabolic rate, which determines the rate that energy is used; and developmental rate, which determines the length of the developmental period. Both development and metabolism are highly temperature-dependent such that developmental costs should be sensitive to the local thermal environment.

Here, we develop, parameterize and test developmental cost theory, a physiologically explicit theory that reveals that ectotherms have narrow thermal windows in which developmental costs are minimized (Topt).

Our developmental cost theory-derived estimates of Topt predict the natural thermal environment of 71 species across seven phyla remarkably well (R2⁓0.83).

Developmental cost theory predicts that costs of development are much more sensitive to small changes in temperature than classic measures such as survival. Warming-driven changes to developmental costs are predicted to strongly affect population replenishment and developmental cost theory provides a mechanistic foundation for determining which species are most at risk. Developmental cost theory predicts that tropical aquatic species and most non-nesting terrestrial species are likely to incur the greatest increase in developmental costs from future warming.

Marshall DJ, Pettersen AK, Bode M, White CR (2020) Developmental cost theory predicts thermal environment and vulnerability to global warming. Nature Ecology & Evolution DOI EPDF

Community efficiency during succession: a test of MacArthur’s minimization principle in phytoplankton communities

Authors: Giulia Ghedini, Michel Loreau, and Dustin J Marshall

Published in: Ecology


Robert MacArthur’s niche theory makes explicit predictions on how community function should change over time in a competitive community. A key prediction is that succession progressively minimizes

the energy wasted by a community, but this minimization is a trade‐off between energy losses from unutilised resources and costs of maintenance. By predicting how competition determines community efficiency over time MacArthur’s theory may inform on the impacts of disturbance on community function and invasion risk.

We provide a rare test of this theory using phytoplankton communities, and find that older communities wasted less energy than younger ones but that the reduction in energy wastage was not monotonic over time. While community structure followed consistent and clear trajectories, community function was more idiosyncratic among adjoining successional stages and driven by total community biomass rather than species composition.

Our results suggest that subtle shifts in successional sequence can alter community efficiency and these effects determine community function independently of individual species membership.

We conclude that, at least in phytoplankton communities, general trends in community function are predictable over time accordingly to MacArthur’s theory. Tests of MacArthur’s minimization principle across very different systems should be a priority given the potential of this theory to inform on the functional properties of communities.

Ghedini G, Loreau M, Marshall DJ (2020) Community efficiency during succession: a test of MacArthur’s minimization principle in phytoplankton communities. Ecology PDF DOI

When does diet matter? The roles of larval and adult nutrition in regulating adult size traits

Authors: Gonçalo M Poças, Alexander E Crosbie, and Christen K Mirth

In press in: Journal of Insect Physiology (preprint)


Adult body size is determined by the quality and quantity of nutrients available to animals. In insects, nutrition affects adult size primarily during the nymphal or larval stages. However, measures of adult size like body weight are likely to also change with adult nutrition.

In this study, we sought to the roles of nutrition throughout the life cycle on adult body weight and the size of two appendages, the wing and the femur, in the fruit fly Drosophila melanogaster.

We manipulated nutrition in two ways: by varying the protein to carbohydrate content of the diet, called macronutrient restriction, and by changing the caloric density of the diet, termed caloric restriction. We employed a fully factorial design to manipulate both the larval and adult diets for both diet types.

We found that manipulating the larval diet had greater impacts on all measures of adult size. Further, macronutrient restriction was more detrimental to adult size than caloric restriction. For adult body weight, a rich adult diet mitigated the negative effects of poor larval nutrition for both types of diets. In contrast, small wing and femur size caused by poor larval diet could not be increased with the adult diet.

Taken together, these results suggest that appendage size is fixed by the larval diet, while those related to body composition remain sensitive to adult diet. Further, our studies provide a foundation for understanding how the nutritional environment of juveniles affects how adults respond to diet.

Poças GM, Crosbie AE, Mirth CK (2019) When does diet matter? The roles of larval and adult nutrition in regulating adult size traits. Journal of Insect Physiology PDF DOI


Testing the drivers of the temperature-size covariance using artificial selection

Authors: Martino E Malerba, and Dustin J Marshall

Published in: Evolution


Body size often declines with increasing temperature. Although there is ample evidence for this effect to be adaptive, it remains unclear whether size shrinking at warmer temperatures is driven by specific properties of being smaller (e.g., surface to volume ratio) or by traits that are correlated with size (e.g., metabolism, growth).

We used 290 generations (22 months) of artificial selection on a unicellular phytoplankton species to evolve a 13‐fold difference in volume between small‐selected and large‐selected cells and tested their performance at 22 °C (usual temperature), 18 °C (−4), and 26 °C (+4).

Warmer temperatures increased fitness in small‐selected individuals and reduced fitness in large‐selected ones, indicating changes in size alone are sufficient to mediate temperature‐dependent performance.

Our results are incompatible with the often‐cited geometric argument of warmer temperature intensifying resource limitation. Instead, we find evidence that is consistent with larger cells being more vulnerable to reactive oxygen species. By engineering cells of different sizes, our results suggest that smaller‐celled species are pre‐adapted for higher temperatures.

We discuss the potential repercussions for global carbon cycles and the biological pump under climate warming.

Malerba ME, Marshall DJ (2019) Testing the drivers of the temperature-size covariance using artificial selection. Evolution PDF DOI

Physical and physiological impacts of ocean warming alter phenotypic selection on sperm morphology

Authors: Evatt Chirgwin, Dustin J Marshall, and Keyne Monro

Published in: Functional Ecology


Global warming may threaten fertility, which is a key component of individual fitness and vital for population persistence. For males, fertility relies on the ability of sperm to collide and fuse with eggs; consequently, sperm morphology is predicted to be a prime target of selection owing to its effects on male function.

In aquatic environments, warming will expose gametes of external fertilizers to the physiological effects of higher temperature and the physical effects of lower viscosity. However, the consequences of either effect for fertility, and for selection acting on sperm traits to maintain fertility, are poorly understood.

Here, we test how independent changes in water temperature and viscosity alter male fertility and selection on sperm morphology in an externally fertilizing marine tubeworm. To create five fertilization environments, we manipulate temperature to reflect current-day conditions (16.5 °C), projected near-term warming (21 °C) and projected long-term warming (25 °C), then adjust two more environments at 21 °C and 25 °C to the viscosity of environments at 16.5 °C and 21 °C, respectively. We then use a split-ejaculate design to measure the fertility of focal males, and selection on their sperm, in each environment.

Projected changes in temperature and viscosity act independently to reduce male fertility, but act jointly to alter selection on sperm morphology. Specifically, environments resulting from projected warming alter selection on the sperm midpiece in ways that suggest shifts in the energetic challenges of functioning under stressful conditions. Selection also targets sperm head dimensions and tail length, irrespective of environment.

We provide the first evidence that projected changes in ocean temperature and viscosity will not only impact the fertility of marine external fertilizers, but expose their gametes to novel selection pressures that may drive them to adapt in response if gamete phenotypes are sufficiently heritable.

Chirgwin E, Marshall DJ, Monro K (2019) Physical and physiological impacts of ocean warming alter phenotypic selection on sperm morphology. Functional Ecology PDF DOI

Size and density mediate transitions between competition and facilitation

Authors: Hayley Cameron, Tim Coulson, and Dustin J Marshall

Published in: Ecology Letters


Species simultaneously compete with and facilitate one another. Size can mediate transitions along this competition–facilitation continuum, but the consequences for demography are unclear.

We orthogonally manipulated the size of a focal species, and the size and density of a heterospecific neighbour, in the field using a model marine system. We then parameterised a size‐structured population model with our experimental data.

We found that heterospecific size and density interactively altered the population dynamics of the focal species. Size determined whether heterospecifics facilitated (when small) or competed with (when large) the focal species, while density strengthened these interactions.

Such size‐mediated interactions also altered the pace of the focal’s life history. We provide the first demonstration that size and density mediate competition and facilitation from a population dynamical perspective. We suspect such effects are ubiquitous, but currently underappreciated.

We reiterate classic cautions against inferences about competitive hierarchies made in the absence of size‐specific data.

Cameron H, Coulson T, Marshall DJ (2019) Size and density mediate transitions between competition and facilitation. Ecology Letters PDF DOI

Powering ocean giants: the energetics of shark and ray megafauna

Authors: Christopher L Lawson, Lewis G Halsey, Graeme C Hays, Christine L Dudgeon, Nicholas L Payne, Michael B Bennett, Craig R White, and Anthony J Richardson

Published in: Trends in Ecology & Evolution


Energetics studies have illuminated how animals partition energy among essential life processes and survive in extreme environments or with unusual lifestyles. There are few bioenergetics measurements for elasmobranch megafauna; the heaviest elasmobranch for which metabolic rate has been measured is only 47.7 kg, despite many weighing >1000 kg.

Bioenergetics models of elasmobranch megafauna would answer fundamental ecological questions surrounding this important and vulnerable group, and enable an understanding of how they may respond to changing environmental conditions, such as ocean warming and deoxygenation.

Larger chambers and swim-tunnels have allowed measurements of the metabolism of incrementally larger sharks and rays, but laboratory systems are unlikely to be suitable for the largest species.

Novel uses of biologging and collaboration with commercial aquaria may enable energetics of the largest sharks and rays to be measured.

Innovative use of technology and models derived from disparate disciplines, from physics to artificial intelligence, can improve our understanding of energy use in this group.

Shark and ray megafauna have crucial roles as top predators in many marine ecosystems, but are currently among the most threatened vertebrates and, based on historical extinctions, may be highly susceptible to future environmental perturbations. However, our understanding of their energetics lags behind that of other taxa. Such knowledge is required to answer important ecological questions and predict their responses to ocean warming, which may be limited by expanding ocean deoxygenation and declining prey availability. To develop bioenergetics models for shark and ray megafauna, incremental improvements in respirometry systems are useful but unlikely to accommodate the largest species. Advances in biologging tools and modelling could help answer the most pressing ecological questions about these iconic species.

Lawson CL, Halsey LG, Hays GC, Dudgeon CL, Payne NL, Bennett MB, White CR, Richardson AJ (2019) Powering ocean giants: the energetics of shark and ray megafauna. Trends in Ecology & Evolution PDF DOI

How can pathogens optimise both transmission and dispersal?

Certain pathogens (disease-producing organisms) are stuck in a Catch-22; to survive they need to continue to find, and infect, new hosts. But infection makes their hosts sick and less likely to move to where there are new hosts to infect.

PhD student Louise Nørgaard and her supervisors Ben Phillips and Matt Hall have found evidence of a pathogen that resolves this issue by exploiting the differences in size and behaviour of male and female hosts to optimize its own chance of successful infection.

The team uses the freshwater crustacean Daphnia magna and its common pathogen Pasteuria ramosa as a model system to test the idea that a pathogen can exploit differences between the sexes of a host to its advantage. The pathogen P. ramosa is ingested by Daphnia after which it sterilises and kills the host, releasing transmission spores that are ready to infect a new host. Female Daphnia are bigger, live longer and are more susceptible to infection than males.

Louise set up two separate experiments, allowing her to monitor the probability that Daphnia would disperse from a crowded area to a less crowded area and to measure the rate and distance travelled by infected and uninfected male and female individuals.

In the first experiment Louise was able to capitalise on previous work that has shown that Daphnia will disperse when conditions are crowded. Exposure to water taken from high densities of Daphniais enough to encourage dispersal. Louise used ‘crowded-conditioned’ water and found infected male Daphnia were more likely to disperse than uninfected males. Infected females, on the other hand, were a lot less likely to disperse than uninfected females.

A second experiment found that infected females had four times the number of transmission spores than infected males and moved less far and more slowly than males or uninfected females. Infected males though, moved at the same rate and travelled the same distance as uninfected males.

The figure A shows how far male (blue) and females (green) disperse when infected with the pathogen compared to uninfected individuals. Louise tested two types of pathogen C1 and C19. She also measured the distance travelled (B) and the spore load in infected individuals (C).

So how do these differences between the sexes help the pathogen? Females are bigger and can host large numbers of transmission spores. Staying put when densities are high means they are releasing this large number of spores into a crowd – potentially maximising the chance of further infections.  Smaller males have fewer spores to release and the chance of secondary infections may be maximised when they move to new areas where few individuals are already infected.

Importantly the differences in dispersal behaviour between infected males and females seem to relate directly to the way the pathogen interacts with each sex. Uninfected males and females had similar rates and distance of dispersal while uninfected females were more likely to move away from crowded habitats than males. These patterns disappear when both sexes are infected.

Do these different infection strategies in different sexes provide a form of bet-hedging for the pathogen? Louise and her supervisors think they do and, if widespread, will have important implications for disease dynamics.

This research is published in the journal Biology Letters.