Metabolic phenotype mediates the outcome of competitive interactions in a response-surface field experiment

Authors: Lukas Schuster, Craig R White, and Dustin J Marshall

Published in: Ecology and Evolution

Abstract

Competition and metabolism should be linked. Intraspecific variation in metabolic rates and, hence, resource demands covary with competitive ability. The effects of metabolism on conspecific interactions, however, have mostly been studied under laboratory conditions.

We used a trait-specific response-surface design to test for the effects of metabolism on pairwise interactions of the marine colonial invertebrate, Bugula neritina in the field.

Specifically, we compared the performance (survival, growth, and reproduction) of focal individuals, both in the presence and absence of a neighbor colony, both of which had their metabolic phenotype characterized.

Survival of focal colonies depended on the metabolic phenotype of the neighboring individual, and on the combination of both the focal and neighbor colony metabolic phenotypes that were present.

Surprisingly, we found pervasive effects of neighbor metabolic phenotypes on focal colony growth and reproduction, although the sign and strength of these effects showed strong microenvironmental variability.

Overall, we find that the metabolic phenotype changes the strength of competitive interactions, but these effects are highly contingent on local conditions. We suggest future studies explore how variation in metabolic rate affects organisms beyond the focal organism alone, particularly under field conditions.

Schuster L, White CR, Marshall DJ (2021) Metabolic phenotype mediates the outcome of competitive interactions in a response‐surface field experiment. Ecology and Evolution PDF DOI 

Predicting the response of disease vectors to global change: The importance of allometric scaling

Authors: Louise S Nørgaard, Mariana Álvarez-Noriega, Elizabeth McGraw, Craig R White, and Dustin J Marshall

Published in: Global Change Biology

Abstract

The distribution of disease vectors such as mosquitoes is changing. Climate change, invasions and vector control strategies all alter the distribution and abundance of mosquitoes.

When disease vectors undergo a range shift, so do disease burdens. Predicting such shifts is a priority to adequately prepare for disease control. Accurate predictions of distributional changes depend on how factors such as temperature and competition affect mosquito life-history traits, particularly body size and reproduction.

Direct estimates of both body size and reproduction in mosquitoes are logistically challenging and time-consuming, so the field has long relied upon linear (isometric) conversions between wing length (a convenient proxy of size) and reproductive output. These linear transformations underlie most models projecting species’ distributions and competitive interactions between native and invasive disease vectors.

Using a series of meta-analyses, we show that the relationship between wing length and fecundity are nonlinear (hyperallometric) for most mosquito species. We show that whilst most models ignore reproductive hyperallometry (with respect to wing length), doing so introduces systematic biases into estimates of population growth. In particular, failing to account for reproductive hyperallometry overestimates the effects of temperature and underestimates the effects of competition. Assuming isometry also increases the potential to misestimate the efficacy of vector control strategies by underestimating the contribution of larger females in population replenishment.

Finally, failing to account for reproductive hyperallometry and variation in body size can lead to qualitative errors via the counter-intuitive effects of Jensen’s inequality. For example, if mean sizes decrease, but variance increases, then reproductive outputs may actually increase.

We suggest that future disease vector models incorporate hyperallometric relationships to more accurately predict changes in mosquito distribution in response to global change.

Nørgaard LS, Álvarez‐Noriega M, McGraw E, White CR, Marshall DJ (2021) Predicting the response of disease vectors to global change: The importance of allometric scaling. Global Change Biology PDF DOI 

Phytoplankton diversity affects biomass and energy production differently during community development

Authors: Giulia Ghedini, Dustin J Marshall, and Michel Loreau

Published in: Functional Ecology

Abstract

Biodiversity determines the productivity and stability of ecosystems but some aspects of biodiversity–ecosystem functioning relationships remain poorly resolved. One key uncertainty is the inter-relationship between biodiversity, energy and biomass production as communities develop over time. Energy production drives biomass accumulation but the ratio of the two processes can change during community development. How biodiversity affects these temporal patterns remains unknown.

We empirically assessed how species diversity mediates the rates of increase and maximum values of biomass and net energy production in experimental phytoplankton communities over 10 days in the laboratory. We used five phytoplankton species to assemble three levels of diversity (monocultures, bicultures and communities) and we quantify their changes in biomass production and energy fluxes (energy produced by photosynthesis, consumed by metabolism, and net energy production as their difference) as the cultures move from a low density, low competition system to a high density, high competition system.

We find that species diversity affects both biomass and energy fluxes but in different ways. Diverse communities produce net energy and biomass at faster rates, reaching greater maximum biomass but with no difference in maximum net energy production. Bounds on net energy production seem stronger than those on biomass because competition limits energy fluxes as biomass accumulates over time.

In summary, diversity initially enhances productivity by diffusing competitive interactions but metabolic density dependence reduces these positive effects as biomass accumulates in older communities. By showing how biodiversity affects both biomass and energy fluxes during community development, our results demonstrate a mechanism that underlies positive biodiversity effects and offer a framework for comparing biodiversity effects across systems at different stages of development and disturbance regimes.

Ghedini G, Marshall DJ, Loreau M (2021) Phytoplankton diversity affects biomass and energy production differently during community development. Functional Ecology PDF DOI 

How does spawning frequency scale with body size in marine fishes?

Authors: Dustin J Marshall, Diego R Barneche, and Craig R White

Published in: Fish and Fisheries

Abstract

How does fecundity scale with female size? Female size not only affects the number and size of offspring released in any one reproductive bout (i.e. batch fecundity) but also affects frequency of bouts that occur within a given spawning season (i.e. spawning frequency).

Previous studies have noted contrasting effects of female size on spawning frequency such that the effect of female size on reproductive output and total egg production of a population remains unclear. If smaller females spawn more frequently, this could effectively nullify hyperallometry—the disproportionate contribution of larger females to batch fecundity.

Here, we explore the relationship between female size and spawning frequency in marine fishes and test this relationship while controlling for phylogeny.

Within all of the species considered, spawning frequency scaled positively with body size. Comparing across species, the smallest species showed steeper scaling than the largest.

Considering only batch fecundity scaling probably underestimates the relationship between body size and absolute fecundity for many species; reproduction is likely to be more hyperallometric than is currently appreciated based on batch fecundity estimates. Second, an understanding of fecundity scaling depends on estimates of batch fecundity, spawning frequency and spawning duration—we have far more estimates of the first parameter than we do the others, and more studies are required.

Marshall DJ, Barneche DR, White CR (2021) How does spawning frequency scale with body size in marine fishes? Fish and Fisheries PDF DOI 

Does metabolic rate drive population size?

All organisms must eat to sustain themselves, but some more so than others. Metabolic rates should determine how much food an organism needs and how quickly it can convert that food into growth. We have long suspected the reason mice populations grow faster than elephant populations has something to do with their different metabolisms – for their size, mice have much higher metabolisms. While higher metabolisms might mean faster population growth, there is a supposed downside – populations with relatively higher metabolisms should exhaust resources at a much lower population biomass due to their higher resource demands. Thus, mice populations can sustain more individuals (have larger population sizes) than elephants, but on a per gram basis, mice have far lower population biomasses. That’s the theory at least – in reality no-one really knows.

Remarkably, despite years of interest in this topic, there have been no experimental tests of how metabolism affects populations – instead we relied on mouse-and-elephant-type comparisons – looking for patterns across organisms of very different sizes. While these comparisons are useful, obviously, mice and elephants differ in far more than their metabolisms alone, and these other factors could easily be driving any differences we observe. What’s needed is an experiment that manipulates the metabolism of whole populations, without changing anything else – a difficult task.

Lukas Schuster and Hayley Cameron along with Craig White and Dustin Marshall, set out to do just that. Using more than 1000 individuals of a common fouling marine creature – which feeds by filtering food particles from the water column – the team created 172 experimental populations that differed in their metabolic rates and population densities. These populations were then hung from plastic panels at a local marina where they were left to grow. The team then followed these populations for their entire lifetimes; measuring survival, growth and reproduction.

As anticipated, populations with higher metabolisms grew more rapidly – but what was unexpected was that populations with moderately high metabolic rates actually supported more individuals than those with lower metabolic rates. The reasons are unclear, but what seems to be happening is that higher metabolisms result in more feeding activity, which allows these populations to access relatively more resources, sustaining a larger number of individuals than expected. Metabolic rates can get too high, however, such that populations with the highest metabolic rates showed the expected decline in population size – probably because they exhausted local resources at a greater rate than these resources could be replenished, such that further increases in metabolism had no effect on resource intake.

The results have some surprisingly far-reaching implications. Many of the assumptions about how climate change will affect the resource consumption of future populations are based on classic, but untested theory. Likewise, fisheries are sometimes managed based on expectations about metabolic rate and resource demands. This research shows that the fundamental theory on how metabolism affects population demography needs revision. Higher metabolisms don’t invariably lead to lower population densities and a key rule of life seems to partially broken – higher metabolism populations can have their cake (grow fast) and eat it too (achieve high densities) – up to point at least.

This research was published in Proceedings of the National Academy of Sciences of the United States of America.

In biology we call the density at which a population stops growing the ‘carrying capacity’. Theoretical models predict that there will be a steady decline in carrying capacity as metabolic rates increases (blue line). But the research team found a more complicated relationship (black line). Initially carrying capacity increased with increasing metabolic rate before starting to decline. At higher metabolic rates the rate of decline in carrying capacity was the same for the team’s experimental data as for theoretical predictions.

Metabolism drives demography in an experimental field test

Authors: Lukas Schuster, Hayley Cameron, Craig R White, and Dustin J Marshall

Published in: Proceedings of the National Academy of Sciences of the United States of America

Significance

Biology has long-standing rules about how metabolism and demography should covary. These rules connect physiology to ecology but remarkably, these rules have only ever been tested indirectly.

Using a model marine invertebrate, we created experimental field populations that varied in metabolic rate but not body size.

We show that metabolism qualitatively affects population growth and carrying capacity in ways predicted by theory but that scaling relationships for these parameters, as well as estimates of energy use at carrying capacity, depart from classic predictions.

That metabolism affects demography in ways that depart from canonical theory has important implications for predicting how populations may respond to global change and size-selective harvesting.

Abstract

Metabolism should drive demography by determining the rates of both biological work and resource demand. Long-standing “rules” for how metabolism should covary with demography permeate biology, from predicting the impacts of climate change to managing fisheries.
Evidence for these rules is almost exclusively indirect and in the form of among-species comparisons, while direct evidence is exceptionally rare.

In a manipulative field experiment on a sessile marine invertebrate, we created experimental populations that varied in population size (density) and metabolic rate, but not body size. We then tested key theoretical predictions regarding relationships between metabolism and demography by parameterizing population models with lifetime performance data from our field experiment.

We found that populations with higher metabolisms had greater intrinsic rates of increase and lower carrying capacities, in qualitative accordance with classic theory. We also found important departures from theory—in particular, carrying capacity declined less steeply than predicted, such that energy use at equilibrium increased with metabolic rate, violating the long-standing axiom of energy equivalence.

Theory holds that energy equivalence emerges because resource supply is assumed to be independent of metabolic rate. We find this assumption to be violated under real-world conditions, with potentially far-reaching consequences for the management of biological systems.

Schuster L, Cameron H, White CR, Marshall DJ (2021) Metabolism drives demography in an experimental field test. Proceedings of the National Academy of Sciences of the United States of America PDF DOI

Fishing better to fish more

We have benchmarks for how to manage fisheries sustainably but what if the assumptions that go into setting those benchmarks are wrong?

In a previous study led by Diego Barneche and published in 2018, a research team looked at reproduction in more than 300 fish species. They found that contrary to a general perception, reproductive output did not increase in proportion with the size of the fish. Instead, the bigger the fish the disproportionately more eggs it produced. The mathematical term for this is hyperallometry.

This has clear implications for fisheries management and led Dustin and colleagues from Australia, USA and Germany to investigate assumptions around reproduction in fisheries management models.

Thirty-two of the world’s largest fisheries use management models that assume a proportional increase in reproductive output and fish size. These models estimate reproductive output from the total biomass of fish mature enough to spawn. This is because they are assuming that two 1 kg fish have the same reproductive output as one 2 kg fish. But the study led by Diego found that this was unlikely — 95% of the fish species they looked at had a hyperallometric relationship between size and reproduction — meaning the one big fish will produce many more eggs than the two smaller fish put together.

Does it matter? Well, yes. Dustin and his colleagues calculated that, for these fisheries, catches are set too high — in most cases, catches are twice what they should be in order to achieve the desired level of replenishment.

So, what happens when we get the biology right? Importantly, challenging assumptions about reproduction not only has ramifications for setting catch limits but has the potential to reset the way we manage fisheries. The team produced models that looked at retaining the largest and most reproductive members of the stock; through a temporary closure or protected area, or by setting size limits that focused on mid-size fish — leaving juveniles and the largest individuals unharvested.

The benefits of these different approaches vary depending on the species. Atlantic cod, for example, would benefit by switching to a fishery closure (either in space or time) with a predicted increase in long-term catch of ~25%

Dustin and his team acknowledge there are difficulties (both practical and social) with these approaches but also emphasise that any strategy that protects and retains larger fish in a population should provide a pay-off. Their models had some general assumptions of their own, however. When modelling fisheries that included protected areas where no fishing was allowed, they assumed that adult fish moved very little while larvae had the potential to replenish areas a long way away.

To check whether their results were too optimistic they did a more detailed study of the coral trout fishery in the Great Barrier Reef where they input data on larval movement. This reduced the catch increase from ~32% to ~16% suggesting that the more generic approach may overestimate benefits of fishery closures by ~12%.

A benefit of 16% is still non-trivial. Overall the results suggest that including hyperallometric reproduction in fisheries management models allows underused management tools such as marine protected areas to outperform traditional tools. This study highlights the role of reservoirs of large, highly reproductive individuals within a fishery.

This research is published in the journal Proceedings of the National Academy of Sciences of the United States of America.

Reproductive hyperallometry and managing the world’s fisheries

Authors: Dustin J Marshall, Michael Bode, Marc Mangel, Robert Arlinghaus, and EJ Dick

Published in: Proceedings of the National Academy of Sciences of the United States of America

Significance

We find that a ubiquitous assumption in fisheries models for predicting population replenishment introduces systematic overestimates of replenishment in fished populations.

For 32 of the world’s major fisheries, these biases result in harvest thresholds being set too high: in most cases, reference points based on spawning potential ratios are more than 2.5 times higher than those necessary to achieve the desired level of replenishment.

When we use the more biologically appropriate assumption of reproductive hyperallometry, we find that management tools such as spatiotemporal closures and harvest slots can outperform traditional approaches in terms of yield.

Failing to consider reproductive hyperallometry overestimates the efficacy of traditional fisheries management and underestimates the benefits of approaches that create reservoirs of larger individuals.

Abstract

Marine fisheries are an essential component of global food security, but many are close to their limits and some are overfished. The models that guide the management of these fisheries almost always assume reproduction is proportional to mass (isometry), when fecundity generally increases disproportionately to mass (hyperallometry).

Judged against several management reference points, we show that assuming isometry overestimates the replenishment potential of exploited fish stocks by 22% (range: 2% to 78%) for 32 of the world’s largest fisheries, risking systematic overharvesting.

We calculate that target catches based on assumptions of isometry are more than double those based on assumptions of hyperallometry for most species, such that common reference points are set twice as high as they should be to maintain the target level of replenishment.

We also show that hyperallometric reproduction provides opportunities for increasing the efficacy of tools that are underused in standard fisheries management, such as protected areas or harvest slot limits. Adopting management strategies that conserve large, hyperfecund fish may, in some instances, result in higher yields relative to traditional approaches.

We recommend that future assessment of reference points and quotas include reproductive hyperallometry unless there is clear evidence that it does not occur in that species.

Marshall DJ, Bode M, Mangel M, Arlinghaus R, Dick EJ (2021) Reproductive hyperallometry and managing the world’s fisheries. Proceedings of the National Academy of Sciences of the United States of America PDF DOI

Effects of light variation in algal cultures: a systematic map of temporal scales

Authors: Belinda Comerford, Nicholas Paul, and Dustin J Marshall

Published in: Journal of Applied Phycology

Abstract

Algal aquaculture is a rapidly growing field, with a proliferation of studies exploring algal growth. The expansion of the field not only presents opportunities for synthesis, but also creates challenges in identifying where the strengths and knowledge gaps exist.

One tool for formally quantifying the state of knowledge is a systematic map, already useful in many fields, but underutilised in algal research. We used a systematic map to describe variable light regimes in algal cultures.

Light variation is ubiquitous in algal cultures and spans a range of temporal scales (microseconds to months), but it is unclear which scales have been explored.

We characterised 1393 experiments according to the temporal scale of light variation that was manipulated. Intensely studied light variation frequencies were either very short (< seconds) or long (diel cycles); the prominent gap was frequencies between these extremes (seconds to hours), especially for experiments that lasted for long durations (> months). Experiments that lasted for days were most common, while few studies lasted for months or more. Most studies were conducted in small culture vessels, used instantaneous changes in light regimes, and few studies reported initial stocking density metrics consistently.

Our map highlights that the field has accumulated a rich knowledge base that is ripe for synthesis in some areas, particularly very short or relatively long frequency light variation. The map indicates that the key priorities are explorations of intermediate frequencies and our understanding of their effects is limited. Similarly, our understanding of evolutionary responses to variable light regimes of all scales is lagging.

Comerford B, Paul N, Marshall D (2021) Effects of light variation in algal cultures: a systematic map of temporal scales. Journal of Applied Phycology PDF DOI

Mother-offspring conflicts: temperature can change selection on offspring size

We know offspring size varies enormously and understanding this variation is a long-standing goal of life history theoreticians and ecologists alike. A particularly interesting facet of offspring size is the fact it affects the fitness of both mothers and offspring simultaneously, so selection acts on both. This can lead to conflict over the amount of provisioning mothers provide to offspring. Selection on offspring usually favours bigger sizes, but mothers should only produce larger offspring where there is a marked benefit in performance for these offspring – there is a cost associated with this extra provisioning.

Temperature has a fairly reliable relationship with offspring size – higher temperatures are associated with smaller offspring. But what happens next? Does the relationship between offspring size and adult performance change with temperature?

There are few studies exploring these relationships in the field because it is an onerous undertaking. Repeated estimates of selection across multiple seasons and years are required to determine whether the relationship between offspring size and adult performance varies with natural temperature fluctuations

Professor Dustin Marshall designed a long-term study aimed at filling that gap. Using the model marine invertebrate species Bugula neritina, his research group deployed over 6000 individuals of known offspring size into the field over a period of 4 years. In total Dustin had 28 cohorts, each of approximately 240 individuals, where he had measures of survival, growth and reproduction of all individuals and water temperature data for the entire period.

Using the data collected in this study Dustin ran a simple ‘optimisation’ model which predicts cooler temperatures favour mothers producing larger offspring, while higher temperatures favour mothers producing smaller offspring. And, this works the other way around too. Larger offspring are favoured at cooler temperatures, smaller offspring are favoured at higher temperatures. In other words, at higher and lower temperatures, selection pressures on both mothers and offspring are the same; their interests are aligned.

But, there was a catch. At intermediate temperatures a conflict emerged. From around 18-22 degrees it is still better to be larger from the offspring’s perspective. Larger offspring had higher survival and growth than smaller offspring but the benefits were not enough to offset the costs to the mother of producing larger offspring. At these temperatures, mothers are better served by producing smaller offspring. This means at intermediate temperatures we would predict different offspring sizes to be favoured, depending on which perspective is taken.

Dustin also estimated the temporal autocorrelation of selection on offspring size among cohorts. In other words, knowing the selection coefficient on offspring size of one cohort, could he predict the selection coefficient of the next? Surprisingly, the answer was yes. But maybe even more surprising was that selection during one cohort was negatively correlated with selection two cohorts from now. So, it seems that selection varies from one generation to the next but this variation is not entirely random.

Estimating temporal autocorrelation is a notoriously data-hungry exercise which is exacerbated here because Dustin is interested in selection in each cohort. This means he only has selection estimates for 28 cohorts despite the scope of the study. Dustin plans to resume estimating selection on offspring size to see whether these patterns persist, as soon as Covid-19 obstacles are removed.

At the same time, he will see whether the relationships between offspring size, adult performance and temperature, change when offspring settle within a community. Does the presence of other species tip the balance in selection on offspring size?

This research is published in the journal Functional Ecology.